Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Toxins (Basel) ; 16(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535798

RESUMO

Viruses are one of the leading causes of human disease, and many highly pathogenic viruses still have no specific treatment drugs. Therefore, producing new antiviral drugs is an urgent matter. In our study, we first found that the natural wasp venom peptide Protopolybia-MP III had a significant inhibitory effect on herpes simplex virus type 1 (HSV-1) replication in vitro by using quantitative real-time PCR (qPCR), Western blotting, and plaque-forming assays. Immunofluorescence analysis showed Protopolybia-MP III could enter cells, and it inhibited multiple stages of the HSV-1 life cycle, including the attachment, entry/fusion, and post-entry stages. Furthermore, ultracentrifugation and electron microscopy detected that Protopolybia-MP III significantly suppressed HSV-1 virion infectivity at different temperatures by destroying the integrity of the HSV-1 virion. Finally, by comparing the antiviral activity of Protopolybia-MP III and its mutants, a series of peptides with better anti-HSV-1 activity were identified. Overall, this work found the function and mechanism of the antiviral wasp venom peptide Protopolybia-MP III and its derivatives against HSV-1 and laid the foundation for the research and development of wasp venom-derived antiviral candidate peptide drugs.


Assuntos
Herpesvirus Humano 1 , Vespas , Humanos , Animais , Venenos de Vespas , Bioensaio , Peptídeos , Antivirais
2.
Toxins (Basel) ; 16(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38535822

RESUMO

The ESKAPE pathogen-associated antimicrobial resistance is a global public health issue, and novel therapeutic strategies are urgently needed. The short cationic antimicrobial peptide (AMP) family represents an important subfamily of scorpion-derived AMPs, but high hemolysis and poor antimicrobial activity hinder their therapeutic application. Here, we recomposed the hydrophilic face of Ctriporin through lysine substitution. We observed non-linear correlations between the physiochemical properties of the peptides and their activities, and significant deviations regarding the changes of antimicrobial activities against different bacterial species, as well as hemolytic activity. Most importantly, we obtained two Ctriporin analogs, CM5 and CM6, these two have significantly reduced hemolytic activity and more potent antimicrobial activities against all tested antibiotic-resistant ESKAPE pathogens. Fluorescence experiments indicated they may perform the bactericidal function through a membrane-lytic action model. Our work sheds light on the potential of CM5 and CM6 in developing novel antimicrobials and gives clues for optimizing peptides from the short cationic AMP family.


Assuntos
Antibacterianos , Hemólise , Humanos , Peptídeos Catiônicos Antimicrobianos , Cátions , Morte Celular
3.
Toxins (Basel) ; 15(10)2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37888622

RESUMO

Biologically active peptides have attracted increasing attention in research on the development of new drugs. Mastoparans, a group of wasp venom linear cationic α-helical peptides, have a variety of biological effects, including mast cell degranulation, activation of protein G, and antimicrobial and anticancer activities. However, the potential hemolytic activity of cationic α-helical peptides greatly limits the clinical applications of mastoparans. Here, we systematically and comprehensively studied the hemolytic activity of mastoparans based on our wasp venom mastoparan family peptide library. The results showed that among 55 mastoparans, 18 had strong hemolytic activity (EC50 ≤ 100 µM), 14 had modest hemolytic activity (100 µM < EC50 ≤ 400 µM) and 23 had little hemolytic activity (EC50 > 400 µM), suggesting functional variation in the molecular diversity of mastoparan family peptides from wasp venom. Based on these data, structure-function relationships were further explored, and, hydrophobicity, but not net charge and amphiphilicity, was found to play a critical role in the hemolytic activity of mastoparans. Combining the reported antimicrobial activity with the present hemolytic activity data, we found that four mastoparan peptides, Parapolybia-MP, Mastoparan-like peptide 12b, Dominulin A and Dominulin B, have promise for applications because of their high antimicrobial activity (MIC ≤ 10 µM) and low hemolytic activity (EC50 ≥ 400 µM). Our research not only identified new leads for the antimicrobial application of mastoparans but also provided a large chemical space to support the molecular design and optimization of mastoparan family peptides with low hemolytic activity regardless of net charge or amphiphilicity.


Assuntos
Anti-Infecciosos , Vespas , Animais , Venenos de Vespas/química , Peptídeos/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Vespas/química , Anti-Infecciosos/farmacologia , Hemólise
4.
Toxins (Basel) ; 15(5)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37235365

RESUMO

Wasp stings have become an increasingly serious public health problem because of their high incidence and mortality rates in various countries and regions. Mastoparan family peptides are the most abundant natural peptides in hornet venoms and solitary wasp venom. However, there is a lack of systematic and comprehensive studies on mastoparan family peptides from wasp venoms. In our study, for the first time, we evaluated the molecular diversity of 55 wasp mastoparan family peptides from wasp venoms and divided them into four major subfamilies. Then, we established a wasp peptide library containing all 55 known mastoparan family peptides by chemical synthesis and C-terminal amidation modification, and we systematically evaluated their degranulation activities in two mast cell lines, namely the RBL-2H3 and P815 cell lines. The results showed that among the 55 mastoparans, 35 mastoparans could significantly induce mast cell degranulation, 7 mastoparans had modest mast cell degranulation activity, and 13 mastoparans had little mast cell degranulation activity, suggesting functional variation in mastoparan family peptides from wasp venoms. Structure-function relationship studies found that the composition of amino acids in the hydrophobic face and amidation in the C-terminal region are critical for the degranulation activity of mastoparan family peptides from wasp venoms. Our research will lay a theoretical foundation for studying the mechanism underlying the degranulation activity of wasp mastoparans and provide new evidence to support the molecular design and molecular optimization of natural mastoparan peptides from wasp venoms in the future.


Assuntos
Mordeduras e Picadas de Insetos , Vespas , Animais , Humanos , Venenos de Vespas/química , Vespas/metabolismo , Peptídeos/química
5.
Toxins (Basel) ; 15(5)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37235373

RESUMO

Thermally processed Buthus martensii Karsch scorpion is an important traditional Chinese medical material that has been widely used to treat various diseases in China for over one thousand years. Our recent work showed that thermally processed Buthus martensii Karsch scorpions contain many degraded peptides; however, the pharmacological activities of these peptides remain to be studied. Here, a new degraded peptide, BmTX4-P1, was identified from processed Buthus martensii Karsch scorpions. Compared with the venom-derived wild-type toxin peptide BmTX4, BmTX4-P1 missed some amino acids at the N-terminal and C-terminal regions, while containing six conserved cysteine residues, which could be used to form disulfide bond-stabilized α-helical and ß-sheet motifs. Two methods (chemical synthesis and recombinant expression) were used to obtain the BmTX4-P1 peptide, named sBmTX4-P1 and rBmTX4-P1. Electrophysiological experimental results showed that sBmTX4-P1 and rBmTX4-P1 exhibited similar activities to inhibit the currents of hKv1.2 and hKv1.3 channels. In addition, the experimental electrophysiological results of recombinant mutant peptides of BmTX4-P1 indicated that the two residues of BmTX4-P1 (Lys22 and Tyr31) were the key residues for its potassium channel inhibitory activity. In addition to identifying a new degraded peptide, BmTX4-P1, from traditional Chinese scorpion medicinal material with high inhibitory activities against the hKv1.2 and hKv1.3 channels, this study also provided a useful method to obtain the detailed degraded peptides from processed Buthus martensii Karsch scorpions. Thus, the study laid a solid foundation for further research on the medicinal function of these degraded peptides.


Assuntos
Venenos de Escorpião , Escorpiões , Animais , Sequência de Aminoácidos , Peptídeos/química , Proteínas Recombinantes/metabolismo , Venenos de Escorpião/química , Escorpiões/química
6.
Biochem Biophys Res Commun ; 603: 138-143, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35287055

RESUMO

Schistosoma japonicum is a parasitic worm that lives in the mesenteric vein of its host and feeds on blood, suggesting that it might be a natural resource of novel anticoagulants. Here, by comprehensive analyses of the genomic sequences of Schistosoma japonicum, a new Kunitz-type gene precursor was identified. The Kunitz-type gene precursor codes for an 18-residue signal peptide and a 60-residue mature peptide. The Kunitz peptide was functionally expressed, and it had apparent inhibitory activity towards the intrinsic coagulation pathway but no effect on the extrinsic coagulation pathway even at the high concentration of 3 µM. Enzyme and inhibitor experiments further showed that the Kunitz domain peptide was a potent and selective FXa inhibitor, so it was named Schixator (Schistosoma FXa inhibitor). Schixator inhibits coagulation factor FXa with a Ki of 2.66 nM, but had weak inhibitory activity towards chymotrypsin, FXIa, plasma kallikrein, and plasmin, and no inhibitory activity towards trypsin, elastase, FIIa or FXIIa. In vivo, the intravenous administration of Schixator into mice dramatically decreased the number of thrombi in the carotid artery in an FeCl3-induced thrombus formation model without producing bleeding complications. To the best of our knowledge, Schixator is the first potent and selective FXa inhibitor from parasitic worms with antithrombotic effects and a low bleeding risk that provides a new clue for lead drug discovery against thrombosis-associated human diseases.


Assuntos
Schistosoma japonicum , Trombose , Animais , Anticoagulantes/farmacologia , Coagulação Sanguínea , Inibidores do Fator Xa/farmacologia , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Hemorragia , Camundongos , Trombose/tratamento farmacológico
8.
Toxins (Basel) ; 13(9)2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34564614

RESUMO

Thermally processed Buthus martensii Karsch scorpions are a traditional Chinese medical material for treating various diseases. However, their pharmacological foundation remains unclear. Here, a new degraded peptide of scorpion toxin was identified in Chinese scorpion medicinal material by proteomics. It was named BmK86-P1 and has six conserved cysteine residues. Homology modeling and circular dichroism spectra experiments revealed that BmK86-P1 not only contained representative disulfide bond-stabilized α-helical and ß-sheet motifs but also showed remarkable stability at test temperatures from 20-95 °C. Electrophysiology experiments indicated that BmK86-P1 was a highly potent and selective inhibitor of the hKv1.2 channel with IC50 values of 28.5 ± 6.3 nM. Structural and functional dissection revealed that two residues of BmK86-P1 (i.e., Lys19 and Ile21) were the key residues that interacted with the hKv1.2 channel. In addition, channel chimeras and mutagenesis experiments revealed that three amino acids (i.e., Gln357, Val381 and Thr383) of the hKv1.2 channel were responsible for BmK86-P1 selectivity. This research uncovered a new bioactive peptide from traditional Chinese scorpion medicinal material that has desirable thermostability and Kv1.2 channel-specific activity, which strongly suggests that thermally processed scorpions are novel peptide resources for new drug discovery for the Kv1.2 channel-related ataxia and epilepsy diseases.


Assuntos
Canal de Potássio Kv1.2/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/toxicidade , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Venenos de Escorpião/toxicidade , Animais , China , Humanos , Medicina Tradicional Chinesa , Escorpiões/química
9.
Front Microbiol ; 12: 684591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335511

RESUMO

Antibiotic-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become a serious threat to public health worldwide. Cationic α-helical antimicrobial peptides (CαAMPs) have attracted much attention as promising solutions in post-antibiotic era. However, strong hemolytic activity and in vivo inefficacy have hindered their pharmaceutical development. Here, we attempt to address these obstacles by investigating BmKn2 and BmKn2-7, two scorpion-derived CαAMPs with the same hydrophobic face and a distinct hydrophilic face. Through structural comparison, mutant design and functional analyses, we found that while keeping the hydrophobic face unchanged, increasing the number of alkaline residues (i.e., Lys + Arg residues) on the hydrophilic face of BmKn2 reduces the hemolytic activity and broadens the antimicrobial spectrum. Strikingly, when keeping the total number of alkaline residues constant, increasing the number of Lys residues on the hydrophilic face of BmKn2-7 significantly reduces the hemolytic activity but does not influence the antimicrobial activity. BmKn2-7K, a mutant of BmKn2-7 in which all of the Arg residues on the hydrophilic face were replaced with Lys, showed the lowest hemolytic activity and potent antimicrobial activity against antibiotic-resistant ESKAPE pathogens. Moreover, in vivo experiments indicate that BmKn2-7K displays potent antimicrobial efficacy against both the penicillin-resistant S. aureus and the carbapenem- and multidrug-resistant A. baumannii, and is non-toxic at the antimicrobial dosages. Taken together, our work highlights the significant functional disparity of Lys vs Arg in the scorpion-derived antimicrobial peptide BmKn2-7, and provides a promising lead molecule for drug development against ESKAPE pathogens.

10.
Toxins (Basel) ; 13(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064808

RESUMO

Scorpion venoms are rich resources of antimicrobial peptides (AMPs). While the short-chain noncysteine-containing AMPs have attracted much attention as templates for drug development, the antimicrobial potential of long-chain noncysteine-containing AMPs has been largely overlooked. Here, by using the online HeliQuest server, we designed and analyzed a series of 14-residue fragments of Smp43, a 43-residue long-chain noncysteine-containing AMP identified from the venom of Scorpio maurus palmatus. We found that Smp43(1-14) shows high antimicrobial activity against both Gram-positive and Gram-negative bacteria and is nontoxic to mammalian cells at the antimicrobial dosage. Sequence alignments showed that the designed Smp43(1-14) displays a unique primary structure that is different from other natural short-chain noncysteine-containing AMPs from scorpions, such as Uy17, Uy192 and IsCT. Moreover, the peptide Smp43(1-14) caused concentration-dependent fluorescence increases in the bacteria for all of the tested dyes, propidium iodide, SYTOXTM Green and DiSC3-5, suggesting that the peptide may kill the bacteria through the formation of pore structures in the plasma membrane. Taken together, our work sheds light on a new avenue for the design of novel short-chain noncysteine-containing AMPs and provides a good peptide template with a unique sequence for the development of novel drugs for use against bacterial infectious diseases.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Venenos de Escorpião/química , Animais , Antibacterianos/isolamento & purificação , Membrana Celular/metabolismo , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação , Conformação Proteica em alfa-Hélice , Escorpiões
11.
Microb Pathog ; 157: 104960, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022355

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) is becoming a troublesome issue worldwide, and anti-CRAB drug research and development is urgently needed. To identify new anti-CRAB drug leads, we investigated seven scorpion venom-derived α-helical peptides that differ in their sequence composition and length. Three peptides, Hp1404, ctriporin and Im5, showed antimicrobial activities against Acinetobacter baumannii. Further antimicrobial assays revealed that Hp1404 exhibited the best cell selectivity with high anti-CRAB and low hemolytic activities. Fluorescence assays demonstrated that Hp1404 can induce dose-dependent disruptions of the bacterial cell membrane, implying a membrane-lytic mode of action. Taken together, our work sheds light on the potential of the scorpion venom-derived peptide Hp1404 for the development of novel antimicrobial agents against CRAB infections.


Assuntos
Acinetobacter baumannii , Anti-Infecciosos , Venenos de Escorpião , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros , Venenos de Escorpião/farmacologia
12.
Toxicon ; 196: 63-73, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33836178

RESUMO

Methicillin-resistant staphylococci have become growing threats to human health, and novel antimicrobials are urgently needed. Natural antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics. Here, two novel cationic α-helical antimicrobial peptides, Lausporin-1 and Lausporin-2, were identified from the venom gland of the scorpion L. australasiae through a cDNA library screening strategy. Biochemical analyses demonstrated that Lausporin-1 and Lausporin-2 are cationic α-helical amphipathic molecules. Antimicrobial assays demonstrated that the two peptides possess antibacterial activities against several species of antibiotic-resistant staphylococci. Importantly, they are active against methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus capitis, with the minimum inhibitory concentrations ranging from 2.5 to 10 µg/ml. Moreover, both peptides can induce dose-dependent plasma membrane disruptions of the bacteria. In short, our work expands the knowledge of the scorpion L. australasiae venom-derived AMPs and sheds light on the potential of Lausporin-1 and Lausporin-2 in the development of novel drugs against methicillin-resistant staphylococci.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Humanos , Resistência a Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Escorpiões
13.
Int J Biol Macromol ; 178: 143-153, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636268

RESUMO

Novel degraded potassium channel-modulatory peptides were recently found in thermally processed scorpions, but their pharmacological properties remain unclear. Here, we identified a full-length scorpion toxin (i.e., BmKcug2) and its four truncated analogs (i.e., BmKcug2-P1, BmKcug2-P2, BmKcug2-P3 and BmKcug2-P4) with three conserved disulfide bonds in processed scorpion medicinal material by mass spectrometry. The pharmacological experiments revealed that the recombinant BmKcug2 and BmKcug2-P1 could selectively inhibit the human Kv1.2 and human Kv1.3 potassium channels, while the other three analogs showed a much weaker inhibitory effect on potassium channels. BmKcug2 inhibited hKv1.2 and hKv1.3 channels, with IC50 values of 45.6 ± 5.8 nM and 215.2 ± 39.7 nM, respectively, and BmKcug2-P1 inhibited hKv1.2 and hKv1.3, with IC50 values of 89.9 ± 9.6 nM and 1142.4 ± 64.5 nM, respectively. The chromatographic analysis and pharmacological properties of BmKcug2 and BmKcug2-P1 boiled in water for different times further strongly supported their good thermal stability. Structural and functional dissection indicated that one amino acid, i.e., Tyr36, determined the differential affinities of BmKcug2 and four BmKcug2 analogs. Altogether, this research investigated the different pharmacological properties of BmKcug2 and its truncated analogs, and the findings highlighted the diversity of K+ channel blockers from various scorpion species through thermal processing.


Assuntos
Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.3/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/farmacologia , Animais , Células HEK293 , Humanos , Escorpiões
14.
Biochem Biophys Res Commun ; 532(2): 265-270, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32863001

RESUMO

Methotrexate (MTX) has been widely used for the treatment of many types of autoimmune diseases, such as rheumatoid arthritis, psoriasis and dermatomyositis. However, its pharmacological mechanism is still unclear completely. In this study, we found that MTX is a potent and selective inhibitor of the Kv1.3 channel, a class of potassium channels highly associated with autoimmune diseases. Electrophysiological experiments showed that MTX inhibited human Kv1.3 channel with an IC50 of 41.5 ± 24.9 nM, and 1 µM MTX inhibited 32.6 ± 1.3% and 25.6 ± 2.2% of human Kv1.1 and Kv1.2 channel currents, respectively. These data implied the unique selectivity of MTX towards the Kv1.3 channel. Excitingly, using channel activation and chimeric experiments, we found that MTX bound to the outer pore region of Kv1.3 channel. Mutagenesis experiments in the Kv.3 channel extracellular pore region further showed that the Dsp371, Thr373 and His399 residues of outer pore region of Kv1.3 channel played important roles in MTX inhibiting activities. In conclusion, MTX inhibited Kv1.3 channel by targeting extracellular pore region, which is different form all the report small molecules, such as PAP-1 and 4-AP, but similar with many natural animal toxin peptides, such as ChTX, ShK and BmKTX. To the best of our knowledge, MTX is the first small molecular scaffold targeting the Kv1.3 channel extracellular pore region, suggesting its potential applications for designing novel Kv1.3 lead drugs and treating Kv1.3 channel-associated autoimmune diseases.


Assuntos
Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/metabolismo , Metotrexato/química , Metotrexato/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Sítios de Ligação , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Células HEK293 , Humanos , Canal de Potássio Kv1.3/genética , Metotrexato/administração & dosagem , Mutagênese , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/administração & dosagem , Bloqueadores dos Canais de Potássio/química
15.
Toxicon ; 184: 167-174, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32565098

RESUMO

Only a few work have been done for peptides from non-venom gland tissues of venomous animals. Here, with the help of the whole body transcriptomic and the hemolymph proteomic data of the Chinese scorpion Buthus martensii Karsch, we identified the first Ascaris-type peptide BmHDP from scorpion hemolymph. The precursor of BmHDP has 80 residues, including a 16 residue signal peptide and a 64 residue mature peptide. The mature peptide has 10 conserved cysteines and adopts a conserved Ascaris-type fold. Using combined inclusion body refolding and biochemical identification strategies, recombinant BmHDP was obtained successfully. Protease inhibitory assays showed that BmHDP inhibited chymotrypsin apparently at a concentration of 8 nM. Patch-clamp experiments showed that BmHDP inhibited the Kv1.3 potassium channel apparently at a concentration of 1000 nM. Coagulation experiment assays showed that BmHDP inhibited intrinsic coagulation pathway apparently at a concentration of 500 nM. To the best of our knowledge, BmHDP is the first Ascaris-type peptide from scorpion hemolymph. Our work highlighted a functional link between scorpion non-venom gland peptides and venom gland toxin peptides, and suggested that scorpion hemolymph might be a new source of bioactive peptides.


Assuntos
Ascaris , Hemolinfa/química , Venenos de Escorpião/química , Escorpiões , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar , Biblioteca Gênica , Peptídeos , Proteômica
16.
Int J Immunogenet ; 47(5): 435-442, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32103629

RESUMO

Class II transactivator (CIITA) is a master regulator of MHC gene expression and plays a role in inducing the expression of other immune system genes, including IL-4, IL-10 and Fas ligand, as well as more than 60 other immunologically significant genes. We used CIITA as a candidate gene to analyse whether any single-nucleotide polymorphisms (SNPs) are associated with chronic hepatitis B virus (HBV) infection. In total, 773 patients with chronic HBV infection were enrolled in this hospital-based case-control study. The patients were divided into groups according to their clinical characteristics: 596 patients had chronic hepatitis B (CHB), and 177 patients had hepatocellular carcinoma (HCC). A total of 313 patients with self-limited HBV infection were selected as the control group. CIITA gene variants were screened using Haploview 4.2 software; improved multiplex ligation detection reaction technology was then used for genotype detection, and HaploReg v4.1 was employed to predict the functions of 15 variants. The results showed that SNPs in introns in the CIITA gene, namely, rs13333382 (TT + TA vs. AA: p = .003, odds ratio (OR) = 0.65, 95% confidence interval (CI) = 0.49-0.87) and rs4780335 (CC + CG vs. GG: p = 9.40 × 10-5 , OR = 0.55, 95% CI = 0.41-0.74), were positively associated with self-limited HBV infection in the dominant genetic model. Additionally, SNP rs1139564 (TT + TC vs. CC: p = .002, OR = 1.61, 95% CI = 1.19-2.16) in the 3' untranslated region may increase the risk of CHB. According to in silico analysis, all three statistically significant variants act as transcription factor binding motifs. However, we did not find that these 15 mutations are associated with HCC risk. Therefore, we believe that CIITA is a susceptibility gene for CHB rather than for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Predisposição Genética para Doença , Hepatite B Crônica/genética , Proteínas Nucleares/genética , Transativadores/genética , Adulto , Alelos , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Feminino , Estudos de Associação Genética , Genótipo , Haplótipos/genética , Hepatite B/epidemiologia , Hepatite B/genética , Hepatite B/patologia , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/virologia , Humanos , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade
17.
Int J Biol Macromol ; 148: 351-363, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31954123

RESUMO

An increasing number of scorpion fossils indicate that the venomous telson developed from the sharp telson in sea scorpions into the extant scorpion-like telson in aquatic scorpions in the Paleozoic Era and then further evolved into the fetal venom system. This hypothesis led us to evaluate the inhibition of scorpion venom-sensitive potassium channels by hemolymph from the scorpion Mesobuthus martensii. Scorpion hemolymph diluted 1:10 inhibited Kv1.1, Kv1.2, Kv1.3 and SK3 potassium channel currents by 76.4%, 90.2%, 85.8%, and 52.8%, respectively. These discoveries encouraged us to investigate the functional similarity between the more ancient defensin ingredients in hemolymph and the evolved neurotoxins in the venom. In addition to the expression of the representative defensin BmKDfsin3 and BmKDfsin5 in both venomous and non-venomous tissues, NMR analysis revealed structural similarities between scorpion defensin and neurotoxin. Functional experiments further indicated that scorpion defensin used the same mechanism as classical neurotoxin to block the neurotoxin-sensitive Kv1.1, Kv1.2, Kv1.3 and SK3 channels. These findings emphasize the likelihood that scorpion defensins evolved into neurotoxins that were adapted to the emergence of the scorpion telson from the sharp telson of sea scorpions into the extant scorpion-like telson in aquatic scorpions in the Paleozoic Era.


Assuntos
Defensinas/metabolismo , Hemolinfa/metabolismo , Canais Iônicos/metabolismo , Neurotoxinas/metabolismo , Escorpiões/metabolismo , Sequência de Aminoácidos , Animais , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Venenos de Escorpião/metabolismo , Homologia de Sequência de Aminoácidos
18.
Molecules ; 24(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146335

RESUMO

Scorpion toxins are well-known as the largest potassium channel peptide blocker family. They have been successfully proven to be valuable molecular probes for structural research on diverse potassium channels. The potassium channel pore region, including the turret and filter regions, is the binding interface for scorpion toxins, and structural features from different potassium channels have been identified using different scorpion toxins. According to the spatial orientation of channel turrets with differential sequence lengths and identities, conformational changes and molecular surface properties, the potassium channel turrets can be divided into the following three states: open state with less hindering effects on toxin binding, half-open state or half-closed state with certain effects on toxin binding, and closed state with remarkable effects on toxin binding. In this review, we summarized the diverse structural features of potassium channels explored using scorpion toxin tools and discuss future work in the field of scorpion toxin-potassium channel interactions.


Assuntos
Modelos Moleculares , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/química , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Escorpiões/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Conformação Molecular , Sondas Moleculares , Ligação Proteica , Relação Estrutura-Atividade
19.
Front Microbiol ; 10: 747, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024509

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2019.00352.].

20.
Front Microbiol ; 10: 352, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891012

RESUMO

Schistosomiasis, also called bilharziasis, is a neglected tropical disease induced by Schistosoma spp. that causes hundreds of millions of infections. Although Schistosoma ova-induced granulomas commonly cause inflammation, hyperplasia, ulceration, micro abscess formation, and polyposis, the role of the egg granuloma on the gut microbiome remains unclear. To explore the role, gut microbial communities in mice infected with Schistosoma japonicum were surveyed. Female C57BL/6 and BALB/c mice were exposed to cercariae of S. japonicum for 45 and 65 days and then sacrificed. Intestinal contents and feces were collected, DNA was extracted, and high-throughput 16S rRNA gene-based pyrosequencing was used to provide a comparative analysis of gut microbial diversity. The intestinal mucosal tissues were also examined. Histopathologic analysis demonstrated that the basic structure of the colonic mucosa was damaged by ova-induced granuloma. Regarding the gut microbiome, 2,578,303 good-quality sequences were studied and assigned to 25,278 Operational Taxonomic Units (OTUs) at a threshold of 97% similarity. The average number of OTUs for C57BL/6 and BALB/c were 545 and 530, respectively. At the phylum level, intestinal microbial communities were dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia. Infection with S. japonicum modified bacterial richness in the fecal associated microbiota. Exposure significantly modified bacterial community composition among different groups. At the phylogenetic levels, LEfSe analysis revealed that several bacterial taxa were significantly associated with the S. japonicum-infected mice. The present results suggest that egg granulomas in the intestine influence differentiation of the gut microbial community under pathophysiological conditions. This result suggests that intestinal microbiome-based strategies should be considered for early diagnosis, clinical treatment, and prognosis evaluation of schistosomiasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...